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1.    Introduction  35 

 36 

In one decade, SAGD process has turned out to be the most promising strategy to develop 37 

huge heavy oil and bitumen accumulations (Butler et al (1980), Butler et al (1981), Aguilera 38 

et al (1991)). Like the conventional thermal processes (Butler et al (1980), Aguilera et al 39 

(1991), Edmunds (1999)), this method aims at reducing oil viscosity by increasing the 40 

temperature. In the SAGD process, this is achieved by drilling a pair of horizontal wells. 41 

Typically, the two horizontal drains are located at short distance one above the other, as 42 

shown in Figure 1. 43 

 44 

Figure 1- SAGD Principle, (courtesy of McDaniel) 45 

 46 

Steam is injected into the upper well and hot fluids are produced from the lower well. This 47 

progressively creates a chamber, which develops by condensing steam at the chamber 48 

boundary and giving latent energy to the surrounding reservoir. Heated oil and water are 49 

drained by gravity along the chamber walls towards the production well (Butler (1998)). 50 

Stable gravity displacement is particularly important to reach a favorable energy balance. In 51 

SAGD, the heated oil remains always in contact with the heated region, as it gets drained 52 

along the sidewalls of the steam chamber (Nasr et al (1999)). Thus, energy losses from heated 53 

oil, which has not been produced, are minimized. 54 

 According to Butler’s original model (Butler et al (1998)), the drainage volumetric rate per 55 

one meter of the well length  is determined by the height of steam chamber, as shown in 56 

Figure 2; the reservoir effective permeability (k), the gravity acceleration constant (g), the 57 

thermal diffusivity of reservoir (α ), porosity (φ), displaceable oil saturation ( oS∆ ), 58 

kinematic oil viscosity at steam temperature (sν ), viscosity constant (m), and the model’s 59 

constant C : 60 

( )
s

o

m

yhsCkg
q

υ
αφ −∆

= 2  
(1) 

 61 

     62 

Figure 2- Schema of SAGD process 63 

 64 
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This equation has been derived with considering some simplifying assumptions. Almost all 65 

the researchers have assumed that complete steam override occurs upon steam injection and 66 

that oil is heated from top to bottom due to conduction solely.   67 

In the present work the transient temperature distribution ahead of the moving interface into 68 

the cold region is formulated. The relationship between the temperature distribution ahead of 69 

the moving interface and the oil rate due to SAGD production system is then derived. After 70 

doing a material balance formulation for the drained region based on a new method, the 71 

position of oil-steam interface is presented. Then, the interface positions into the half-width 72 

of reservoir based on Butler and Stephens’ formula (1981) along with TANDRAIN theorem 73 

is formulated. By applying the new defined dimensionless groups and taking advantage of 74 

TANDRAIN phenomenon, the recovery factor of Butler et al (1981) is derived and compared 75 

to that of the proposed scheme. Likewise, the interface positions into the half-width of 76 

reservoir based on the proposed method along with TANDRAIN theorem is formulated and 77 

the recovery factor based on such new method is calculated afterwards. Also, a model which 78 

is simulated by a thermal simulator is described in detail and its results are then compared to 79 

those of the proposed method. Finally, a procedure to produce sets of type-curves in order to 80 

obtain a rough estimation of average interface velocity and interface velocity number is 81 

proposed.  82 

 83 

2. Analytical Modeling of SAGD 84 

 85 

 86 

Figure 3- SAGD production system 87 

 88 

 2.1 Temperature distribution  – Consider a small section of a mature SAGD operation as 89 

depicted in Figure 3. At the steam-oil interface, steam condenses and heat is liberated. A 90 

thermal gradient is established via conduction between the steam temperature at the interface 91 

and the original reservoir temperature. As liquid drains via gravity out of differential element, 92 

steam moves in to replace the liquid. Consequently the interface moves at a certain velocity 93 

perpendicular to the oil-steam interface. 94 

The governing equation for heat flow into the cold region via unsteady conduction heat 95 

transfer may be read as below: 96 
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Initial and boundary conditions (Pooladi-darvish et al (1994)): 97 
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A new coordinate system is defined to avoid working with a moving boundary problem that 98 

travels with the interface (Pooladi-darvish et al (1994)). 99 

∫−=
t

dUx
0

)( ττξ  (4) 

Where )(tU  is the interface velocity in the direction ofξ . This transformation fixes the 100 

moving interface at 0=ξ  for all time (Pooladi-darvish et al (1994)).  101 

Using the following standard relationships 102 
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And substituting along with rearranging we may have (Pooladi-darvish et al (1994)); 103 

2
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(7) 

Defining the dimensionless groups and transforming the heat transfer equation into a 104 

normalized and dimensionless form enables us to work on analytical modeling with much 105 

more confidence. To do so, let us define them; 106 
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Where the parameter N may be called as “interface velocity number”. After all, the 108 

dimensionless heat transfer equation in a moving boundary problem such as SAGD can be 109 

found as; 110 
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(8) 

For solving such equation there may be many mathematical methods, though here the method 111 

of Laplace transforms has been employed. Therefore; 112 
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This is the Laplace transform of the transient heat equation and can be solved (in s-domain) 113 

analytically by applying the boundary conditions as below; 114 
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The inverse of this transform can be obtained through the use of some simple general 115 

theorems, that is; 116 
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(11) 

This is the transient temperature distribution ahead of the moving interface into the cold 117 

region, with the initial and boundary conditions of (3). 118 

In the existing works that deal with analytical modeling of SAGD process, the temperature 119 

distribution is assume to be quasi-steady state and also the interface temperature remains 120 

constant. Therefore, the boundary condition of interface should be modified as the following: 121 
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Where,   
Rs
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−
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Now, for any specified dimensionless time and any specified dimensionless distance, 123 

normalized temperature ahead of the moving interface may be expressed in terms of some 124 

dimensionless variables. The result has been obtained by solving the partial differential 125 

equation (eq. 8) over the initial and boundary conditions 12: 126 
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(13) 

This transient temperature distribution would have been more useful than that of Butler et al 127 

(1981), why the temperature time dependency has not been ignored. We may get to the point 128 

easily as soon as we formulate the oil recovery factor and compare the results with those of 129 

Butler et al (1981) in the headway.  130 

 131 
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2.2 Oil rate due to gravity drainage 132 

This section is connected with the previous one which dealt with the temperature distribution 133 

in a SAGD problem. We are seeking here for a way by which we may recognize the relation 134 

between the temperature distribution ahead of the moving interface and the oil rate due to 135 

SAGD production system.  136 

Applying Darcy’s law and considering schema in figure 3 oil rate is approximated as 137 

(Aguilera et al (1991)); 138 

ξ
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Since ogo ρρρ ≅−
  , we obtain from equation 14 with integration over the entire length; 139 
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υ  is a fluid property which is a function of temperature, may be determined by using an 140 

equation of state (EOS) defining its dependence upon temperature. Here we use the equation 141 

suggested by Butler et al (1981) which has been used in the development of the SAGD 142 

theory. 143 
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So that oil rate is written as; 144 
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Now, we may use the transient temperature distribution of 13 to predict the rate of drainage 145 

to a horizontal well located at the ordinate “y”  above the reservoir base.  146 
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This equation calculates the drainage rate for just one side of the reservoir. Therefore for the 147 

entire reservoir we should multiply this by 2. 148 

In this equation “k” is effective permeability to oil flow. Therefore we should have the 149 

amount of kro that Butler and Stephen (1980) have assigned it for the sake of convenience as 150 

0.4 as an average measure.  It cannot be indeed calculated explicitly, so we should either 151 
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guess a value being sound enough to cover the problem wholly or acquire it by using some 152 

nonlinear regression manipulations. For now, we consider it as a guess like that has been 153 

allocated by Butler and Stephen (1980). Further, we may rearrange the equation 18 as below: 154 

D
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Where rok  is 0.4, (Butler et al (1980)). zxkk  is an estimation for effective permeability to 155 

oil (md), g is acceleration due to gravity (m/s2), α  is the thermal diffusivity of the reservoir 156 

material in (m2/day), os∆  is the displaceable oil saturation which is the difference between 157 

initial oil saturation and residual oil saturation (dimensionless), h is the vertical height over 158 

which drainage is occurring ( m), y is the ordinate of a point on the interface over which the 159 

heated fluid is passing (m),  osυ  is the kinematic viscosity of oil at steam temperature 160 

(cp.m3/kg), and q is the oil drainage rate (m3/day per one meter of horizontal production well) 161 

. 162 

In this paper we have been seeking specially for two purposes; (1) Calculating the oil 163 

drainage rate including the effect of transient heat conduction effects, (2) Positioning the oil-164 

steam interface as it advances to the reservoir boundaries beyond the wells.  165 

Equations 28 and 29 serve our purpose to attain the first goal. For the second goal the 166 

following calculations have been made. 167 

The drainage oil rate via SAGD that is suggested by Butler and Stephens (1980) is: 168 

os

ozx

m

yhsgkk
q

υ
αφ )(2

109922.2 4 −∆
×= −  

(21) 

 169 

2.3 Steam-Oil Interface Positioning – The proposed scheme 170 

Doing a material balance formulation for the drained region in an infinitesimal time step, we 171 

may obtain this (Aguilera et al (1991)): 172 

x
o

t
t

ys
x

q







∂
∂∆=






∂
∂ φ  

(22) 



 8

This expression accounts for the changing dimension of the steam zone as it expands at 173 

different rates vertically downward and horizontally across. Considering this equation and 174 

doing some mathematical manipulations the horizontal velocity at the interface is as follows: 175 

( ) ( )
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x
y xy
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(23) 

Combining the two former equations we may have: 176 
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Taking the partial derivative with respect to y in equation 19 and placing it in equation 25 177 

results in: 178 
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Like the assumption that the steam chamber is initially a vertical plane above the well, the 179 

horizontal displacement x is given as a function of time t and height y by the relationship: 180 

t
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This may also be solved for y which results: 181 
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These mathematical arrangements have been done before by Butler et al (1981), however it is 182 

modified here by both inserting the parameters which serve for the transient temperature 183 

distribution as well as defining the novel dimensionless groups. The schema in figure 3 184 

depicts a typical interface which tends to progress away from the wells to the side boundaries. 185 

 If the half-width of the reservoir is w and the height is h, we may define some dimensionless 186 

variables: 187 

h

y
Y =    ,             

w
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As it is described before all the variables are in SI unit, and for the sake of more comfort osυ  190 

is in cp.m3/kg. The parameter Dt  is similar to that was obtained by Butler et al (1980) with a 191 

little bit difference, inserting reservoir half-width in lieu of reservoir height in the 192 

denominator of the time fraction. These dimensionless groups are designated in a novel way 193 

so that we could portray each side of the reservoir like a square with aspects of unity. It could 194 

also help us for calculating the recovery factor by tracking down the interface into the 195 

reservoir during its period of progress.    196 

Hereby the equation 27 may also be represented in dimensionless form: 197 

2*

4

1
1 








−=

X

t
Y D  

(30) 

Values of Y calculated from equation 30 have been plotted against X in figure 4. Note that in 198 

figure 4 when time increases, the steam-oil interface moves away from the point 199 

( )0, PY where the horizontal producer well is located. The steam zone in the figure becomes 200 

larger as oil drains by gravity out of the system. Eventually, after a long period of time, the 201 

reservoir has been depleted of oil by gravity drainage and only a steam zone above the 202 

producer exists. It is easily obvious that not whole the reservoir could be produced via SAGD 203 

but up to the depth “pY ” may be produced with the help of steam-assisted gravity drainage. 204 

The region below the horizontal producer that cannot be produced is shown in figures 4 and 5 205 

in a blue-bricked pattern. This assumption would be reasonable in comparison with Butler 206 

and Stephens (1980) that they located the horizontal producer in the bottom section of the 207 

reservoir at absolute zero ordinate but as it is clear in very rare situations a horizontal 208 

producer could be drilled right at the origin. Therefore it calls for a modification to the 209 

assumption they used. 210 

 211 

 212 

 213 

Figure 4 Interface Curves- proposed scheme. 214 

 215 

2.4 Steam-Oil Interface Positioning - Butler Theory along with TANDRAIN 216 

Butler et al (1981) introduced a formula in dimensionless form like that of equation 30 in this 217 

form: 218 
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In this equation Y  is the same as defined in the pervious section, but Dt ′  and X ′ differ a little 219 

bit. Also, the fraction 
X

tD

′
′

 is indeed the same as the fraction 
X

tD  with the dimensionless 220 

variables defined previously. They are: 221 
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In the interim, the basic SAGD analytical expression does not take into account how the 222 

heated oil flows horizontally to the horizontal producer as the oil-steam interface moves away 223 

horizontally from the point (0, Yp). In reality, the oil-steam interface will frequently stay at 224 

the horizontal production well as the steam zone grows larger above the well, rather than 225 

moving horizontally away from the horizontal well (Aguilera et al (1991)). It means that a 226 

modification to the previous works ought to be added and this modification is referred to as 227 

TANDRAIN (Butler and Stephens (1980)). Basically, what TANDRAIN does is draw a 228 

tangent line from the horizontal production well location to the steam-oil interface curves for 229 

particular points in time (Aguilera et al (1991)). 230 

 231 

Figure 5 Interface Curve- TANDRAIN assumption 232 

 233 

At point tX  two criteria must be satisfied: 234 

Criterion (1) : 2

2 1
.

2
1

t

D
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X

t
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Criterion (2) : 
tXdX

dY
m =  (35) 

Solving these two equations simultaneously we may have: 235 
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Finally, the interface position into the half-width of reservoir based on Butler and Stephens’ 239 

formulation (Butler et al (1981)) in the most general form is as the following: 240 
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 (39) 

Regarding equation 38, values of Y  have been plotted against X in figure 6.  241 

 242 

Figure 6 Interface Curves-based on Butler et al (1981) 243 

 244 

As we can see in figures 4 and 6 the interface of Butler et al (1981) and those which are 245 

obtained in this work are similar in behavior, however they differ quantitatively.  The 246 

precision of the proposed theory is to be examined below with the help of recovery factor 247 

matching.  248 

 249 

2.5 Recovery Factor determination - Butler Theory along with TANDRAIN 250 

For comparison purposes, the recovery factor of Butler and Stephens' (1980) and that of the 251 

proposed scheme have been calculated. They were compared with each other to provide us 252 

judgment about the accuracy of the method. By applying the new defined dimensionless 253 

groups and taking advantage of TANDRAIN phenomenon the recovery factor of Butler et al 254 

(1981) could be expressed as: 255 
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As it is clear the recovery factor here based on the Butler and Stephens (1980) theorem is not 258 

a straight line with a constant slope but a parabola. Meanwhile, in figure 7 it can be seen that 259 

while the location of horizontal producer varies the ultimate recovery varies consequently. It 260 

means that by varying the location of producer on the vertical axis, the recovery factor varies 261 

thereafter. It clearly seems logical because the production mechanism in SAGD is just due to 262 

gravity drainage. Therefore, it looks to be necessary to include the location of horizontal 263 

producer in the analytical modeling of SAGD. Note that the equation 40 has been derived as 264 

a consequence of defining new dimensionless groups (scaling the reservoir dimensions into 265 

the range of 0 to 1) and establishing the drained area between two consecutive time steps. 266 

 267 

Figure 7 the effect of Horizontal Producer location on RF- based on Butler and Stephens (1980) 268 

 269 

In this figure, it can bee seen that the higher the location of horizontal producer, the less the 270 

value of ultimate recovery would be. It seems quite reasonable why the height of oil column 271 

above the production well decreases and consequently the gravity forces diminishes 272 

somewhat.  273 

 274 

2.6 Steam-Oil Interface Positioning – Proposed scheme along with 275 

TANDRAIN 276 

The TANDRAIN modification along with the new formulation gives: 277 

From equations 27 we have; 278 
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Like it is done based on Butler’s (1981) at point tX  two criteria must be satisfied: 280 
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Finally, the interface position into the half-width of reservoir in the most general form is as 285 

the following:  286 
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This equation may be put into an equation with the dimensionless time similar to that of 287 

Butler and Stephens (1980). It gives: 288 
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Now we are seeking for estimating the fraction of the original oil in place that has been 290 

produced due to steam-assisted gravity drainage. Knowing the location of interface at any 291 

particular point in time, we may easily calculate the area that has been drained. Subtracting 292 

this calculated drained area from the displaceable area could lead us to recovery factor up to 293 

that particular time. The described process for recovery calculation has been done in another 294 

way by Butler et al (1981). They did the calculation by means of a numerical method by 295 

combining equations 29 and 33. The proposed equation was as below:   296 

( )( )11 1 −−−−−= − ininXX niδ   (52) 

This equation is used repetitively to calculate successive positions of the interface (Butler et 297 

al (1980)). Also n denotes the index of each stage of calculations. However in this work it has 298 

mentioned that it is possible for suggesting an explicit-analytical-method stands for the 299 

recovery calculations precisely. 300 

 301 

2.7 Recovery Factor determination- Proposed scheme 302 

Since the cumulative recovery factor could be connected directly to the progress of interface 303 

within the reservoir, it could be formulated based on a simple frame as below:  304 

nowrightAreaAreaeDisplceablRF −=   (53) 
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The “area right now” could be obtained by establishing the area under the interface curve at 305 

any particular time.  Since the half-width reservoir has been scaled as a unit aspect square and 306 

its total area is 1, the displaceable area will be 1-Yp. Provided that: 307 
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Also note that while using this formula the recovery factors are to be obtained based on the 308 

recoverable oil. It means that the calculated recovery factors according to the equation 52 309 

must be multiplied by orgs−1  in case the residual oil saturation for gas injection is nonzero. 310 

This point should be well considered all over this paper. 311 
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The recovery factor could be also presented in the most general form: 315 
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and in the form with similar dimensionless time to Butler’s it could be expressed as: 316 
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In the figure below it is easily visible that the more the value of Yp, the less the ultimate 317 

recovery. It also depicts the connection between the main dimensionless groups which have 318 
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been described before; they are dimensionless time ( Dt ), dimensionless rate parameter (Dq ), 319 

and dimensionless producer location (pY ), as well as recovery factor (RF ). 320 

 321 

Figure 8 the effect of Horizontal Producer location on RF- based on “New Method” 322 

 323 

In the meantime, a set of calculated interface curves is given in figure 9 that depicts the 324 

position of interface at different dimensionless time. 325 

 326 

Figure 9 Interface curves with TANDRAIN assumption-New Theory (Half-width Reservoir) 327 

 328 

It is also possible to locate the interface in the whole reservoir. Figure 10 portrays the 329 

location of oil-steam interface within a heavy oil reservoir over a long period of time in 330 

dimensionless scale. As it is clear, having been used the TANDRAIN theorem (Butler and 331 

Stephens (1980)), interface is fixed at the horizontal production well at all the times. 332 

 333 

Figure 10 Interface curves with TANDRAIN assumption-New Theory (Full-width Reservoir) 334 

 335 

A comparison has been made among the results of new formulation in this work with those of 336 

Butler et al (1980, 1981) and also simulation results. It has been done in the following. 337 

 338 
3. Simulation Model Description 339 

The model used to obtain simulation results was half of a box-shaped reservoir with a 340 

drainage area of 7.5 acres and a constant thickness of 50 m. The porous medium has a 341 

homogenous porosity of 0.33, allowing areal permeability isotropy and vertical anisotropy 342 

with values in x, y, and z directions of 2000, 2000, and 800 md, respectively. Two horizontal 343 

well of radius 0.0875 m are located one above another in the lower part of the reservoir, 344 

spaced vertically 12 m apart from each other. They are centered at mid-width and completed 345 

wholly along the reservoir. Initially, there are two phases: water at an immobile saturation of 346 

0.2, and oil with a high viscosity of 10000 cp. Capillary pressure effect is ignored. The effect 347 

of condensation over the interface, for the sake of convenience, is ignored as well. It means 348 

that the dimensionless temperature (iθ ) at the interface ( 0=ζ ) is always equal to 1, same as 349 

all other previous works.  350 

 351 

3.1 Simulator 352 
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The simulator used in this study is a three phase Thermal simulator. It allows an adaptive 353 

implicit-explicit grid formulation. This formulation reduces computer execution time by 354 

applying an IMPES type solution to certain grid blocks that do not need to be solved fully 355 

implicitly.  356 

 357 

3.2 Grid Selection 358 

In the numerical study of steam-assisted gravity drainage in a heavy oil reservoir it is usual to 359 

simulate just one side of the reservoir and considering symmetry. Also, it is important to 360 

ensure that the simulator grid block sizes do not influence the performance results.  Unless a 361 

proper griding system is obtained, we may incur the fluctuation in oil rate and underestimate 362 

the recovery factor due to temperature dispersion over the grid block volume. Since it takes 363 

much more time to heat a larger grid block to oil mobilization temperature, fluctuation in oil 364 

rate and underestimation in recovery factor may be encountered. 365 

To study the sensitivity of simulation results to grid size, simulation runs were made at 366 

similar conditions and the results were then plotted versus grid sizes and an appropriate grid 367 

block size is selected at the point where performance results converge as grid block size 368 

becomes smaller (Figure 11).  369 

Fluid flow is expected to be fast and radial near the well bore. For this reason, Cartesian grid 370 

blocks should be small enough for high flow resolution and equally sized for better accuracy. 371 

With increasing distance from the well, flow properties change less rapidly. In this case, grid 372 

blocks may become large in order to save computer time and storage. With this in mind, four 373 

grids have been simulated: Uniform Coarse Grid with 135 blocks, Uniform Fine Grid with 374 

23595 blocks, Non-Uniform Fine Grid with 16830 blocks, and Non-Uniform Medium Grid 375 

with 1309 blocks. 376 

 377 

 378 

Figure 11-Influence of Grid System on simulation results 379 

 380 

According to Figure 11 the Uniform Fine Griding is more than acceptable for representing an 381 

element of symmetry to the SAGD process.  382 

 383 

4. “New Method” versus “Butler et al (1980, 1981)” 384 
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After being described the new formulations in detail and being done a modification to the 385 

definition of dimensionless variables of Butler at al (1980, 1981), some comparisons among 386 

the precision of “New Method” and “Butler’s” as well as simulation results have been made. 387 

Since the effect of condensation over the interface is overlooked, the value of m
iθ  would be 388 

equal to 1 all the times. Hence, the equation 59 that is based on recoverable oil (disregarding 389 

the effect of residual oil saturation for gas injection) could be rearranged in this way:  390 
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Where, 391 
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In the above equation there are two parameters which are quite ambiguous and there is no any 392 

straight method stands for obtaining them explicitly. Also, despite the idea of Butler and 393 

Stephens (1980) that considered rok  being normally about 0.4, we still have to obtain the 394 

value ofN . Of course it would be very worthwhile to propose a method to calculateN  395 

because doing that, we can obtain the value of the interface velocity- a parameter which has 396 

not been formulated or estimated as of yet. 397 

 398 

All in all, from equation 58 it is clear that N  should be calculated to make the SAGD process 399 

completely clear in a heavy oil reservoir, although due to the lack of an explicit relationship 400 

to do so we may have to use the theory of type curves. In the figure below, we see a set of 401 

type-curves depicts the relationship among dimensionless time, and recovery factor as well 402 

asN for a particular amount ofpy  . 403 

 404 

Figure 12-New Type-Curves for Recovery Factor versus dimensionless group- yp=0.04 405 

 406 

This is a set of type-curves by which we may obtain a rough estimation of N  that would be a 407 

good representative for average interface velocity in the duration of SAGD process.  408 



 19

In figure below an attempt of matching the simulation results over the type-curves has been 409 

done. It illustrates a comparatively good match between the simulation data points and those 410 

of curves related to N equal to 0.015 or 0.035.  411 

 412 

Figure 13- setting up matches between Simulation Results and Type-Curves 413 

 414 

Figure 14 compares the recovery factor calculated from the “New Method” by allocating the 415 

parameter N  equal to 0.025, 0.035, and 1 with those calculated from Butler using the 416 

TANDRAIN assumption and the recovery factor obtained from the Thermal Simulator. 417 

 418 

Figure 14 Cumulative drained Oil Recovery to horizontal producer 419 

 420 

From this plot we can see that the proposed formulation (equation 57) works well in general, 421 

however that of Butler and Stephens (1980) overvalues the recovery factors together with 422 

drainage rates. According to this figure, at early times the “New Method” (like Butler and 423 

Stephens (1980)) overestimates the recovery factor via SAGD, however at late time it shows 424 

a good match among the curves and simulation trend. While in the “New Method” and any 425 

other researches, so far, the effect of heat transfer via the overburden and underburden has 426 

been ignored and also the effect of heat loss due to steam condensation over the interface has 427 

been overlooked, it would be quite reasonable to arrive at such consequences.  428 

Besides, it is easily visible in this figure that the value of N  affects the recovery in SAGD to 429 

an upper limit and that is around 2 arises from this plot. Also in this figure it can be seen that 430 

Butler and Stephens’ (1980) could lead us to results near to those of “New Method” with N  431 

equal to 2. It means that applying the “New Method” with high values of N  (greater than 1) 432 

acts as if we have nearly applied the formulas suggested by Butler and Stephens (1980). 433 

Regarding the simulation model described before, it is clear in the figure below that the 434 

values of N  greater than 1 do not affect the SAGD recovery and oil production rates. For 435 

this, if some operational parameters are subjected to change beyond a certain limit, the oil 436 

production and steam chamber sustainability will not be improved any more. For example the 437 

rate of steam injection or the injected steam temperature could be in any order, but more than 438 

a particular range nothing would be gained in case. Being obtained that range, extra expenses 439 

could be avoided. It’s a point which is ought to be concerned thoroughly while studying 440 

production optimization in SAGD.   441 

 442 
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Figure 15 “Interface Velocity Number” vs. Ultimate Recovery of simulation model 443 

 444 

And in Figure 16 the conceivable values of interface velocity in this case is drawn versus 445 

ultimate recovery factor. 446 

 447 

Figure 16 Interface Velocity vs. Ultimate Recovery of simulation model 448 

 449 

According to this figure and figure 13 there is a way- proposed in this work -to get the 450 

interface velocity calculated which seems completely to be innovative. 451 

 452 
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Nomenclature 477 

 478 

xk  Reservoir permeability in x  direction (md) 

zk  Reservoir permeability in z  direction (md) 

g  Acceleration constant due to gravity (m/s2) 

α  Thermal diffusivity of reservoir (m2/day) 

ϕ  Porosity (dimensionless) 

oS∆  Displaceable oil saturation (dimensionless) 

sν  Cinematic oil viscosity at steam temperature (cp.m3/kg) 

µ  Oil viscosity (cp) 

m  Viscosity constant (dimensionless) 

h  Reservoir thickness (m) 

y  The distance from the reservoir base (m) 

w  Reservoir half-width (m) 

ξ  New coordination variable (m) 

ζ  Dimensionless distance in the new coordination 

X  Dimensionless distance from the origin toward the x  axis 

Y  Dimensionless distance from the origin toward the vertical axis 

pY  Dimensionless producer location 

t  Time (day) 

τ  Dimensionless time 

Dt  Butler’s dimensionless time 

*
Dt  The proposed dimensionless time 

,u U  Interface velocity (m/day) 

N  Interface velocity number (dimensionless) 

T  Temperature ahead of the moving interface (° K) 

θ  Dimensionless temperature 

iθ  Dimensionless temperature at interface 

s Laplace transform variable 

ϕ⌢  The angle between the producing element and the horizon 

oρ  Oil density (kg/m3) 
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gρ  Gas density (kg/m3) 

q  Oil production rate (m3/day) 

Dq  Dimensionless oil rate parameter 

Dq′  Dimensionless oil rate parameter 

RF  Recovery factor (fraction) 

u  Step function 

 479 
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Figure 1. SAGD Principle, (courtesy of McDaniel)
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Figure 2. Schema of SAGD process
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Figure 3. SAGD production system
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Figure 4. Interface Curves, proposed scheme. 
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Figure 5. Interface Curves, TANDRAIN assumption. 

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

X, dimensionless

Y,
 d

im
en

si
on

le
ss

Yp 

moving interface 
at T=0.5 

Tangent line 

Xt 
touching point 

Figure 5



Figure 6. Interface Curves, Butler et al [2]. 
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Figure 8 the effect of Horizontal Producer location on RF- based on “New Method” 
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Figure 9 Interface curves with TANDRAIN assumption-New Theory (Half-width Reservoir) 
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Figure 10 Interface curves with TANDRAIN assumption-New Theory (Full-width Reservoir) 
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Figure 11-Influence of Grid System on simulation results 
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Figure 12-New Type-Curves for Recovery Factor versus dimensionless group- yp=0.04 
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Figure 13- setting up matches between Simulation Results and Type-Curves 
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Figure 15 “Interface Velocity Number” vs. Ultimate Recovery of simulation model 
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